O-Level Computer Science P1 & P2 Notes

First Edition

Navid Saqib

(0333-4259883)

Visiting Teacher

Lahore Grammar School

Beacon House School

SISA

KIMS

ROOTS

All rights reserved. No part of this publication may be reproduced, Stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

Title O-Level Computer Science Notes

Author Navid Saqib. (0333-4259883)

Published by MS Books (042-35774780)

Edition First Edition

Legal Advisor Ashir Najeeb Khan (Advocate High Court)

AKBAR LAW CHAMBERS

39-40, 1st Floor, Sadiq Plaza, The Mall, Lahore

042-36314839, 0307-4299886

For Complaints/Order MS Books

83-B, Ghalib Market Gulberg III Lahore

(042-35774780),(03334504507),(03334548651)

CONTENT TABLE

PAPER 1

Ch#	Topics	Pg#
1.	Number Systems	5
2.	Communication and Internet Technologies	18
3.	Logic Gates and Logic Circuits	28
4.	Operating System	38
5.	Computer Architecture	42
6.	Input and output devices	47
7.	Memory and Data Storage	67
8.	High and Low Level Languages	77
9.	Security and Ethics	84

PAPER 2

Ch#	Topics	Pg#
1.	Knowing Algorithm and Pseudocode	102
2.	Identifier Table	103
3.	Flowchart	104
4.	Programming Stage 1: Setting and declaration	115
5.	Programming stage 2- Input	118
6.	programming stage 4 output	121
7.	Programming stage 3: Processing	122
8.	Selection construct	131
9.	Nested if statements	151
10.	Iteration	157
11.	Validation	170
12.	1D arrays	175
13.	Finding maximum and minimum value of array	180
14.	Knowing Database	183
	PRACTICE BOOKLET	
<u> 15.</u>	Pseudocode practice	191
<u> 16.</u>	if/then/else/selectcase practice	202
17.	Iteration loop practice 1	230
<u> 18.</u>	Iteration loop practice 2	239
19.	1D array practice	246

Topic 1 : NUMBER SYSTEMS

Introduction

The whole number system resolves around three components.

- Denary System
- Binary System
- Hexadecimal

Denary System: We humans are familiar to denary system which is based on base 10. Which means count/set of 10 will be used.

How we human invent binary?

How digits are formulated?

BINARY SYSTEM: is based on the Base 2. Which means only two values 0 and 1 can be used in this system to represent each digit. All machines and devices and circuitry used binary as a main source to implement human commands to do task for them.

Concept of 8 bit:

8 bit is the Smallest unit used in computer either its memory or its data storage let's see its scale

Storage Scale

8bits = 1 byte = 1 character e.g A
1024 bytes = 1KB
1024 MB = 1MB
1024 MB = 1GB
1024GB = 1TB

Let's take 8 boxes as eight bit and calculate its location

128 2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰		

Let's Calculate 40 into binary

128	64	J_	16	_	4	2	1
2 ⁷	2^6	2 ⁵	2^4	2^3	2 ²	2^1	2^0
		1		1			

Re calculation:

128	64	32	16	8	4	2	1
0	0	1	0	1	0	0	0
0	0	32	0	8	0	0	0
=40							

Conversion into Denary

Let's take the previous examples into account

1	0	0	1	0	0	1	0
128	64	32	16	8	4	2	1

We will add the values beneath 1s

In this case

$$128 + 16 + 2 = (146)_{10}$$

Another example

1	1	1	0	0	1	0	1
128	64	32	16	8	4	2	1

We will add the values beneath 1s

In this case

$$128 + 16 + 32 + 4 + 1 = (181)_{10}$$

Convert other examples by yourself

